The performance of the parameterized TFDW kinetic functional on molecules

Jouko Lehtomäki¹, Alexander Karpenko¹, Leonardo A. Espinosa Leal¹, Miguel A. Caro¹, Olga Lòpez-Acevedo¹

¹Aalto University, Department of Applied Physics

We assess the performance of parameterized orbital-free (OF) functionals on atoms and molecules self-consistently with all-electron values obtained with projector augmented-wave method¹ (PAW).

Specifically we investigate Thomas-Fermi-Weizsäcker model for kinetic functional where fractions of Thomas-Fermi and Weizsäcker are parameterized as (γ, λ) , respectively, in atoms ². Our interest lies in total energy and Euler equation eigenvalue. The optimum (γ, λ) with respect to Kohn-Sham values is however different for each property and atom investigated. Recently these results have been combined to investigate the transferrability of these parameters from atoms to molecules ³. We also look at the optimum parameters with respect to other properties, like bond length, in molecules HF, HCl, CO, and H₂O

We also present some findings on how the parameterized kinetic functional describes charged systems. Banguria and Lieb have shown that certain orbital-free model ($\gamma = 1, \lambda = 0.37$) does not have negative ions⁴ and our numerics indicate that this seems to be the case also for some other (γ, λ) models.

¹Lehtomäki J., Makkonen I., Caro, M., Harju, A., Lòpez-Acevedo O., J. Chem. Phys. 141, 234102 (2014).

²Espinosa Leal L., Karpenko A., Caro M., Lòpez-Acevedo O., Phys. Chem. Chem. Phys., DOI: 10.1039/C5CP01211B (2015).

³Karpenko A., Espinosa Leal L., Caro M., Lehtomäki J., Lòpez-Acevedo O. (in preparation).

⁴R Benguria and E H Lieb 1985 J. Phys. B: At. Mol. Phys. 18 1045